Como cetonas limpam o cérebro?

Cetonas são substâncias produzidas pelo fígado durante as dietas com baixo teor de carboidratos. Possuem múltiplos efeitos metabólicos e moleculares que favorecem a manutenção e restauração da homeostase cerebral, especialmente em contextos de estresse metabólico e neurodegeneração. A fisiologia subjacente envolve metabolismo energético, regulação de estresse oxidativo, sinalização celular e mecanismos de proteostase.

Mecanismos principais

1) Substituição de combustível e otimização metabólica

  • As cetonas (principalmente β-hidroxibutirato e acetoacetato) entram no cérebro através de transportadores monocarboxilatos (MCTs) e são oxidadas nas mitocôndrias, gerando acetil-CoA para o ciclo de Krebs e fosforilação oxidativa. Isso fornece ATP de forma eficiente quando a glicose está limitada ou hipometabólica.

  • A utilização de cetonas diminui a necessidade de glicólise e pode reduzir a produção de espécies reativas de oxigénio (ROS) porque a fosforilação oxidativa de cetonas é mais eficiente em termos de relação ATP/oxigénio do que o metabolismo da glicose.

2) Redução do estresse oxidativo e inflamação

  • Cetonas modulam vias celulares que reduzem ROS e sinais pró-inflamatórios, incluindo ativação de fatores antioxidantes e inibição de inflamassomas como o NLRP3.

  • Elas também influenciam a expressão de genes antioxidantes por meio de sinalização epigenética (por exemplo, modulação de HDAC ou sirtuínas), aumentando a resistência ao estresse oxidativo.

3) Modulação de autofagia e “limpeza” de proteínas danificadas

  • Há evidência emergente de que β-hidroxibutirato facilita a autofagia e a biogênese lisossomal, mecanismos celulares de degradação e reciclagem de proteínas e organelos disfuncionais, crucial para remover agregados proteicos e detritos celulares.

  • Estudos pré-clínicos (evidência recente) mostram que cetonas podem alterar a solubilidade de proteínas mal dobradas, facilitando sua eliminação por vias de autofagia/lysossomal, reduzindo agregados associados a neurodegeneração.

4) Regulação de vias de sobrevivência celular e sinalização

  • Cetonas ativam sensores metabólicos como SIRT1/AMPK/PGC-1α, promovendo biogênese mitocondrial e melhorando a capacidade oxidativa das mitocôndrias.

  • Elas também influenciam neurotransmissão e equilíbrio excitador/inibitório (ex: GABA/glutamato), o que pode limitar excitotoxicidade neuronal.

5) Redução de neuroinflamação e suporte glial

  • Ao suprimir ativação microglial pró-inflamatória e promover fenótipos anti-inflamatórios, cetonas ajudam a reduzir sinais inflamatórios crónicos que contribuem para disfunção neuronal.

Resumindo, as cetonas melhoram a eficiência energética mitocondrial, reduzem estresse oxidativo, ativam vias de detoxificação e autofagia, e modulam respostas inflamatórias e epigenéticas. Esses efeitos combinados promovem a manutenção e remoção de componentes intracelulares danificados e proteicos através de mecanismos celulares de qualidade proteica e metabolismo energético favorável, o que tem sido interpretado como um “efeito de limpeza” neuroprotectivo em contextos patológicos.

A plataforma da saúde metabólica: https://t21.video

Dra. Andreia Torres é Nutricionista, especialista em nutrição clínica, esportiva e funcional, com mestrado em nutrição humana, doutorado em psicologia clínica e cultura/ensino na saúde, pós-doutorado em saúde coletiva. Também possui formações no Brasil e nos Estados Unidos em práticas integrativas em saúde. Para contratar envie uma mensagem: http://andreiatorres.com/consultoria/

A resposta à terapia de reposição hormonal depende também da genética

A perimenopausa não deve ser tratada apenas como que da hormonal. O artigo Personalized nutrition and precision medicine in perimenopausal women: A minireview of genetic polymorphisms COMT, FUT2, and MTHFR explica isso (Andrade et al., 2025). Genes isolados não explicam sozinhos sintomas clínicos. Nenhum gene atua isoladamente. Genes funcionam dentro de vias metabólicas integradas. O efeito clínico não vem de uma única variação e sim de vias alteradas.

Genes interagem o tempo todo e na perimenopausa isso não é diferente. Pequenas variações mudam o metabolismo do estrogênio, a resposta ao estresse, a absorção de B12, metilação e níveis de homocisteína, microbiota intestinal, regulação do cortisol. TRH não resolve tudo, é a precisão que muda o tratamento.

Por exemplo, COMT não afeta apenas dopamina. Ele participa da via de metilação e do metabolismo de catecolaminas e estrogênios. O impacto depende da disponibilidade de cofatores, da atividade de outras enzimas e do contexto fisiológico. COMT lenta gera mais sensibilidade ao estrogênio e ao estresse, com mais irritabilidade, ansiedade e insônia. Em um contexto de estrogênio instável, variantes em COMT só se manifestam clinicamente se a via de metilação estiver sobrecarregada ou deficiente. Na prática, olhar também a via da metilação e trabalhar junto. Adequar terapia, com doses menores de hormônios, via transdérmica e suporte à metilação.

O FUT2 não é um gene intestinal isolado. Ele influencia a composição da microbiota, a absorção de vitamina B12 e, indiretamente, vias imunometabólicas. O efeito clínico depende da interação gene–microbiota–nutrientes. Na menopausa, alterações intestinais e inflamatórias tornam essa via crítica para energia, cognição e resposta imune. Na prática, o paciente pode precisar de probióticos selecionados, prebióticos e B12 na forma ativa.

O MTHFR não determina sozinho a capacidade de metilação. Ele atua dentro da via do folato, integrada ao ciclo da metionina, ao metabolismo da homocisteína e à regulação epigenética. As variantes patogênicas de rs1801133 e 131 afetam a conversão do folato, aumentam a homocisteína, o risco cardiovascular. Na prática, pode ser necessário suplementar metilfolato, P5P, B12 ativa e monitorar risco cardiovascular. Lembre de avaliar também os outros genes da via do folato.

COMT, FUT2 e MTHFR funcionam de forma integrada e é essa interação influencia o bem estar da mulher, a metabolização de hormônio, os níveis de estresse e de inflamação. Sintomas como fadiga, ansiedade, névoa mental, ganho de peso e piora do sono emergem da convergência dessas vias, não de um gene específico. A vida em qualquer fase, incluindo perimenopausa e menopausa, exige leitura integrada de vias hormonais inflamatórias e de metilação. Genômica clínica não é lista de SNPs. É visualização de sistemas.

Curso: Genômica Visual. https://bit.ly/genomica-visual

Dra. Andreia Torres é Nutricionista, especialista em nutrição clínica, esportiva e funcional, com mestrado em nutrição humana, doutorado em psicologia clínica e cultura/ensino na saúde, pós-doutorado em saúde coletiva. Também possui formações no Brasil e nos Estados Unidos em práticas integrativas em saúde. Para contratar envie uma mensagem: http://andreiatorres.com/consultoria/

Autópsia negativa em jovens: por que o coração para sem deixar rastros? 💔🔍

Você já ouviu falar de casos onde um jovem saudável morre subitamente e a autópsia diz que "está tudo normal"? Isso é mais comum do que se imagina. Cerca de 40% das mortes súbitas inesperadas em pessoas com menos de 35 anos apresentam uma autópsia negativa.

Mas como isso é possível? A resposta está na diferença entre estrutura e eletricidade:

1️⃣ O problema é invisível a olho nu: As autópsias tradicionais buscam defeitos estruturais (como um músculo cardíaco muito grosso ou artérias entupidas). No entanto, em muitos jovens, isto raramente é encontrado. A causa é uma canalopatia — uma doença elétrica primária.

2️⃣ Defeito molecular: Nessas condições, o coração é anatomicamente perfeito, mas existem falhas microscópicas nos canais iônicos (as "portas" de sódio, potássio e cálcio das células). É como um carro com o motor visualmente novo, mas com uma falha oculta na fiação elétrica.

3️⃣ Síndrome da Morte Arritmogênica Súbita (SADS): Quando a causa permanece incerta após o exame físico, usamos o termo SADS. As principais suspeitas são síndromes como o QT Longo, Brugada e a TVPC.

A solução? A Autópsia Molecular. 🧬 O teste genético post-mortem consegue identificar a causa da morte em 20% a 30% dos casos de SADS.

Por que isso importa? Identificar o gene exato não serve apenas para dar um nome à tragédia, mas para salvar os familiares que estão vivos. Se a causa foi genética, irmãos e pais podem ter a mesma mutação e precisam de acompanhamento para evitar que o mesmo aconteça com eles.

As canalopatias e miocardiopatias cardíacas envolvem uma vasta gama de genes que codificam canais iónicos ou proteínas reguladoras, sendo que a identificação destas mutações é crucial para o diagnóstico e estratificação de risco.

Abaixo estão detalhados alguns genes importantes nas canalopatias.

1. Canal de Sódio Cardíaco (Nav1.5) e Proteínas Relacionadas

O gene SCN5A é o principal responsável pela codificação da subunidade α do canal de sódio cardíaco (Nav1.5), desempenhando um papel central na excitabilidade elétrica do coração. Mutações neste gene podem causar tanto perda quanto ganho de função, resultando em fenótipos variados.

  • SCN5A: Associado à Síndrome de Brugada (20-30% dos casos), Síndrome do QT Longo Tipo 3 (5-10%), doença do nó sinusal, fibrilhação auricular e cardiomiopatia dilatada.

  • Subunidades β e outras: Os genes SCN1B, SCN2B, SCN3B e SCN4B codificam subunidades auxiliares que modulam a função do canal de sódio. Outras proteínas interatuantes incluem a caveolina-3 (CAV3), a sintrofina α (SNTA1) e o gene GPD1L. Embora a subunidade α seja a principal responsável pela condução dos iões, as subunidades β desempenham papéis reguladores fundamentais para a função elétrica correta do coração.

2. Síndrome do QT Longo (SQTL)

A SQTL é geneticamente heterogênea, com pelo menos 15 genes identificados, mas três genes principais respondem por aproximadamente 75% dos casos clínicos:

  • KCNQ1 (SQTL1): Envolvido em 30-55% dos casos; os eventos são frequentemente desencadeados por exercício físico, especialmente natação.

  • KCNH2 (SQTL2): Envolvido em 25-45% dos casos; os gatilhos comuns incluem ruídos súbitos ou despertar noturno.

  • SCN5A (SQTL3): Representa 5-10% dos casos; as arritmias ocorrem tipicamente em repouso ou durante o sono.

  • Genes raros: Incluem KCNJ2 (Andersen-Tawil), CACNA1C (Timothy) e os genes da calmodulina (CALM1, CALM2, CALM3).

3. Síndrome de Brugada (SBr)

Embora a SBr apresente elevada complexidade genética, o diagnóstico genético positivo é encontrado em apenas 30-35% dos indivíduos.

  • SCN5A: Continua a ser o gene mais frequentemente mutado (11-28% dos pacientes).

    • Já foram descritas mais de 300 mutações diferentes apenas no gene SCN5A. Essas mutações localizam-se preferencialmente nos segmentos transmembranares e nos poros do canal, mas podem ocorrer em qualquer parte da proteína.

  • SCN10A: Recentemente identificado como um gene de suscetibilidade relevante (5-17%).

  • Canais de Cálcio: Mutações nos genes CACNA1C, CACNB2B e CACNA2D1 também foram descritas.

4. Taquicardia Ventricular Polimórfica Catecolaminérgica (TVPC)

Esta síndrome manifesta-se por arritmias induzidas por estresse emocional ou exercício.

  • RYR2: Gene do recetor de rianodina cardíaco, responsável por 60-65% dos casos (hereditariedade autossómica dominante).

  • CASQ2: Codifica a calsequestrina; mutações são raras (<5%) e geralmente de transmissão recessiva.

5. Miocardiopatias e Outras Condições

As miocardiopatias envolvem genes que codificam proteínas do sarcómero, do desmossoma ou do citoesqueleto.

  • Miocardiopatia Hipertrófica (MCH): Os genes mais comuns são o MYBPC3 (30-40%) e o MYH7 (20-30%).

  • Miocardiopatia Dilatada (MCD): O gene TTN (titina) é responsável por cerca de 25% dos casos familiares.

  • Miocardiopatia Arritmogénica (MAVD): Mutações em genes desmossómicos como PKP2 (25-40%), DSG2, DSP e DSC2 são predominantes.

  • Hipercolesterolemia Familiar (FH): Envolve principalmente os genes LDLR, APOB e PCSK9.

  • Hipertensão Arterial Pulmonar (HAP): O gene BMPR2 é o principal fator genético (70-80% dos casos hereditários).

Para compreender o papel destes genes, imagine que o coração é uma orquestra altamente sincronizada: os genes funcionam como as partituras que instruem cada instrumento (canais iónicos) sobre quando e com que intensidade tocar. Se houver um erro na partitura (mutação), um instrumento pode tocar fora do tempo ou com volume inadequado, desafinando toda a sinfonia e gerando o que clinicamente chamamos de arritmia.

Recomendações das Diretrizes

As diretrizes internacionais recomendam que o teste genético seja abrangente ou especificamente dirigido ao sequenciamento completo dos genes principais (como KCNQ1, KCNH2 e SCN5A) em casos de forte suspeita clínica.

Dra. Andreia Torres é Nutricionista, especialista em nutrição clínica, esportiva e funcional, com mestrado em nutrição humana, doutorado em psicologia clínica e cultura/ensino na saúde, pós-doutorado em saúde coletiva. Também possui formações no Brasil e nos Estados Unidos em práticas integrativas em saúde. Para contratar envie uma mensagem: http://andreiatorres.com/consultoria/